/* Copyright (c) 2014, 2020 The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation, nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #define LOG_NDEBUG 0 #define LOG_TAG "LocSvc_misc_utils" #include #include #include #include #include #include #include #include #include #include #ifndef MSEC_IN_ONE_SEC #define MSEC_IN_ONE_SEC 1000ULL #endif #define GET_MSEC_FROM_TS(ts) ((ts.tv_sec * MSEC_IN_ONE_SEC) + (ts.tv_nsec + 500000)/1000000) int loc_util_split_string(char *raw_string, char **split_strings_ptr, int max_num_substrings, char delimiter) { int raw_string_index=0; int num_split_strings=0; unsigned char end_string=0; int raw_string_length=0; if(!raw_string || !split_strings_ptr) { LOC_LOGE("%s:%d]: NULL parameters", __func__, __LINE__); num_split_strings = -1; goto err; } LOC_LOGD("%s:%d]: raw string: %s\n", __func__, __LINE__, raw_string); raw_string_length = strlen(raw_string) + 1; split_strings_ptr[num_split_strings] = &raw_string[raw_string_index]; for(raw_string_index=0; raw_string_index < raw_string_length; raw_string_index++) { if(raw_string[raw_string_index] == '\0') end_string=1; if((raw_string[raw_string_index] == delimiter) || end_string) { raw_string[raw_string_index] = '\0'; if (num_split_strings < max_num_substrings) { LOC_LOGD("%s:%d]: split string: %s\n", __func__, __LINE__, split_strings_ptr[num_split_strings]); } num_split_strings++; if(((raw_string_index + 1) < raw_string_length) && (num_split_strings < max_num_substrings)) { split_strings_ptr[num_split_strings] = &raw_string[raw_string_index+1]; } else { break; } } if(end_string) break; } err: LOC_LOGD("%s:%d]: num_split_strings: %d\n", __func__, __LINE__, num_split_strings); return num_split_strings; } void loc_util_trim_space(char *org_string) { char *scan_ptr, *write_ptr; char *first_nonspace = NULL, *last_nonspace = NULL; if(org_string == NULL) { LOC_LOGE("%s:%d]: NULL parameter", __func__, __LINE__); goto err; } scan_ptr = write_ptr = org_string; while (*scan_ptr) { //Find the first non-space character if ( !isspace(*scan_ptr) && first_nonspace == NULL) { first_nonspace = scan_ptr; } //Once the first non-space character is found in the //above check, keep shifting the characters to the left //to replace the spaces if (first_nonspace != NULL) { *(write_ptr++) = *scan_ptr; //Keep track of which was the last non-space character //encountered //last_nonspace will not be updated in the case where //the string ends with spaces if ( !isspace(*scan_ptr)) { last_nonspace = write_ptr; } } scan_ptr++; } //Add NULL terminator after the last non-space character if (last_nonspace) { *last_nonspace = '\0'; } err: return; } inline void logDlError(const char* failedCall) { const char * err = dlerror(); LOC_LOGe("%s error: %s", failedCall, (nullptr == err) ? "unknown" : err); } void* dlGetSymFromLib(void*& libHandle, const char* libName, const char* symName) { void* sym = nullptr; if ((nullptr != libHandle || nullptr != libName) && nullptr != symName) { if (nullptr == libHandle) { libHandle = dlopen(libName, RTLD_NOW); if (nullptr == libHandle) { logDlError("dlopen"); } } // NOT else, as libHandle gets assigned 5 line above if (nullptr != libHandle) { sym = dlsym(libHandle, symName); if (nullptr == sym) { logDlError("dlsym"); } } } else { LOC_LOGe("Either libHandle (%p) or libName (%p) must not be null; " "symName (%p) can not be null.", libHandle, libName, symName); } return sym; } uint64_t getQTimerTickCount() { uint64_t qTimerCount = 0; #if __aarch64__ asm volatile("mrs %0, cntvct_el0" : "=r" (qTimerCount)); #elif defined (__i386__) || defined (__x86_64__) /* Qtimer not supported in x86 architecture */ qTimerCount = 0; #else asm volatile("mrrc p15, 1, %Q0, %R0, c14" : "=r" (qTimerCount)); #endif return qTimerCount; } uint64_t getQTimerDeltaNanos() { char qtimer_val_string[100]; char *temp; uint64_t local_qtimer = 0, remote_qtimer = 0; int mdm_fd = -1, wlan_fd = -1, ret = 0; uint64_t delta = 0; memset(qtimer_val_string, '\0', sizeof(qtimer_val_string)); char devNode[] = "/sys/bus/mhi/devices/0306_00.01.00/time_us"; for (; devNode[27] < 3 && mdm_fd < 0; devNode[27]++) { mdm_fd = ::open(devNode, O_RDONLY); if (mdm_fd < 0) { LOC_LOGe("MDM open file: %s error: %s", devNode, strerror(errno)); } } if (mdm_fd > 0) { ret = read(mdm_fd, qtimer_val_string, sizeof(qtimer_val_string)-1); ::close(mdm_fd); if (ret < 0) { LOC_LOGe("MDM read time_us file error: %s", strerror(errno)); } else { temp = qtimer_val_string; temp = strchr(temp, ':'); temp = temp + 2; local_qtimer = atoll(temp); temp = strchr(temp, ':'); temp = temp + 2; remote_qtimer = atoll(temp); if (local_qtimer >= remote_qtimer) { delta = (local_qtimer - remote_qtimer) * 1000; } LOC_LOGv("qtimer values in microseconds: local:%" PRIi64 " remote:%" PRIi64 "" " delta in nanoseconds:%" PRIi64 "", local_qtimer, remote_qtimer, delta); } } return delta; } uint64_t getQTimerFreq() { #if __aarch64__ uint64_t val = 0; asm volatile("mrs %0, cntfrq_el0" : "=r" (val)); #elif defined (__i386__) || defined (__x86_64__) /* Qtimer not supported in x86 architecture */ uint64_t val = 0; #else uint32_t val = 0; asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val)); #endif return val; } uint64_t getBootTimeMilliSec() { struct timespec curTs; clock_gettime(CLOCK_BOOTTIME, &curTs); return (uint64_t)GET_MSEC_FROM_TS(curTs); } // Used for convert position/velocity from GSNS antenna based to VRP based void Matrix_MxV(float a[3][3], float b[3], float c[3]) { int i, j; for (i=0; i<3; i++) { c[i] = 0.0f; for (j=0; j<3; j++) c[i] += a[i][j] * b[j]; } } // Used for convert position/velocity from GNSS antenna based to VRP based void Matrix_Skew(float a[3], float c[3][3]) { c[0][0] = 0.0f; c[0][1] = -a[2]; c[0][2] = a[1]; c[1][0] = a[2]; c[1][1] = 0.0f; c[1][2] = -a[0]; c[2][0] = -a[1]; c[2][1] = a[0]; c[2][2] = 0.0f; } // Used for convert position/velocity from GNSS antenna based to VRP based void Euler2Dcm(float euler[3], float dcm[3][3]) { float cr = 0.0, sr = 0.0, cp = 0.0, sp = 0.0, ch = 0.0, sh = 0.0; cr = cosf(euler[0]); sr = sinf(euler[0]); cp = cosf(euler[1]); sp = sinf(euler[1]); ch = cosf(euler[2]); sh = sinf(euler[2]); dcm[0][0] = cp * ch; dcm[0][1] = (sp*sr*ch) - (cr*sh); dcm[0][2] = (cr*sp*ch) + (sh*sr); dcm[1][0] = cp * sh; dcm[1][1] = (sr*sp*sh) + (cr*ch); dcm[1][2] = (cr*sp*sh) - (sr*ch); dcm[2][0] = -sp; dcm[2][1] = sr * cp; dcm[2][2] = cr * cp; } // Used for convert position from GSNS based to VRP based // The converted position will be stored in the llaInfo parameter. #define A6DOF_WGS_A (6378137.0f) #define A6DOF_WGS_B (6335439.0f) #define A6DOF_WGS_E2 (0.00669437999014f) void loc_convert_lla_gnss_to_vrp(double lla[3], float rollPitchYaw[3], float leverArm[3]) { LOC_LOGv("lla: %f, %f, %f, lever arm: %f %f %f, " "rollpitchyaw: %f %f %f", lla[0], lla[1], lla[2], leverArm[0], leverArm[1], leverArm[2], rollPitchYaw[0], rollPitchYaw[1], rollPitchYaw[2]); float cnb[3][3]; memset(cnb, 0, sizeof(cnb)); Euler2Dcm(rollPitchYaw, cnb); float sl = sin(lla[0]); float cl = cos(lla[0]); float sf = 1.0f / (1.0f - A6DOF_WGS_E2 * sl* sl); float sfr = sqrtf(sf); float rn = A6DOF_WGS_B * sf * sfr + lla[2]; float re = A6DOF_WGS_A * sfr + lla[2]; float deltaNEU[3]; // gps_pos_lla = imu_pos_lla + Cbn*la_b .* [1/geo.Rn; 1/(geo.Re*geo.cL); -1]; Matrix_MxV(cnb, leverArm, deltaNEU); // NED to lla conversion lla[0] = lla[0] + deltaNEU[0] / rn; lla[1] = lla[1] + deltaNEU[1] / (re * cl); lla[2] = lla[2] + deltaNEU[2]; } // Used for convert velocity from GSNS based to VRP based // The converted velocity will be stored in the enuVelocity parameter. void loc_convert_velocity_gnss_to_vrp(float enuVelocity[3], float rollPitchYaw[3], float rollPitchYawRate[3], float leverArm[3]) { LOC_LOGv("enu velocity: %f, %f, %f, lever arm: %f %f %f, roll pitch yaw: %f %f %f," "rollpitchyawRate: %f %f %f", enuVelocity[0], enuVelocity[1], enuVelocity[2], leverArm[0], leverArm[1], leverArm[2], rollPitchYaw[0], rollPitchYaw[1], rollPitchYaw[2], rollPitchYawRate[0], rollPitchYawRate[1], rollPitchYawRate[2]); float cnb[3][3]; memset(cnb, 0, sizeof(cnb)); Euler2Dcm(rollPitchYaw, cnb); float skewLA[3][3]; memset(skewLA, 0, sizeof(skewLA)); Matrix_Skew(leverArm, skewLA); float tmp[3]; float deltaEnuVelocity[3]; memset(tmp, 0, sizeof(tmp)); memset(deltaEnuVelocity, 0, sizeof(deltaEnuVelocity)); Matrix_MxV(skewLA, rollPitchYawRate, tmp); Matrix_MxV(cnb, tmp, deltaEnuVelocity); enuVelocity[0] = enuVelocity[0] - deltaEnuVelocity[0]; enuVelocity[1] = enuVelocity[1] - deltaEnuVelocity[1]; enuVelocity[2] = enuVelocity[2] - deltaEnuVelocity[2]; }