aboutsummaryrefslogtreecommitdiff
path: root/bin/model.py
diff options
context:
space:
mode:
Diffstat (limited to 'bin/model.py')
-rwxr-xr-xbin/model.py68
1 files changed, 68 insertions, 0 deletions
diff --git a/bin/model.py b/bin/model.py
new file mode 100755
index 0000000..c44e0a6
--- /dev/null
+++ b/bin/model.py
@@ -0,0 +1,68 @@
+#!/usr/bin/env python3
+
+from typing import List, Tuple
+from sklearn import linear_model
+import tqdm
+import scipy
+import sqlite3
+import argparse
+import numpy as np
+
+class matrix_builds_inputpnames:
+ independent_variables: scipy.sparse.coo_array
+ dependent_variable: np.ndarray
+
+ def __init__(self, db: str) -> None:
+ row: List[int] = []
+ col: List[int] = []
+ data: List[int] = []
+
+ con = sqlite3.connect(db)
+ cur = con.cursor()
+
+ builds = self.table_fetch(cur, '''
+ SELECT ROWID, drv_id, duration FROM builds_cleaned
+ ''')
+ self.dependent_variable = np.array([ [ row[1] ] for row in tqdm.tqdm(builds) ])
+
+ for build in tqdm.tqdm(builds):
+ inputpnames = self.table_fetch(cur, '''
+ SELECT drv_id, pname_id FROM input_pnames
+ WHERE input_pnames.drv_id = ?
+ ''', (build[1],) )
+
+ for inputpname in inputpnames:
+ row.append(build[0] - 1)
+ col.append(inputpname[1])
+ data.append(1)
+
+ np_row = np.array(row)
+ np_col = np.array(col)
+ np_data = np.array(data)
+ self.independent_variables = scipy.sparse.coo_array((np_data, (np_row, np_col)))
+
+ con.commit()
+ con.close()
+
+ @staticmethod
+ def table_fetch(cur: sqlite3.Cursor, query: str, args: Tuple = ()) -> List:
+ query_exec = cur.execute(query, args)
+ return query_exec.fetchall()
+
+def args_get():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('-d', '--db', required=True, help="path to sqlite database containing input_pnames and builds")
+ parser.add_argument('-t', '--test', type=int, required=True, help="row to test against")
+ return parser.parse_args()
+
+if __name__ == '__main__':
+ args = args_get()
+ matrix = matrix_builds_inputpnames(args.db)
+
+ regr = linear_model.LinearRegression()
+ regr.fit(matrix.independent_variables, matrix.dependent_variable)
+ pred = regr.predict([matrix.independent_variables.toarray()[args.test]])
+
+ print(f'prediction : {pred[0][0]}')
+ print(f'og duration : {matrix.dependent_variable[args.test][0]}')
+