aboutsummaryrefslogblamecommitdiff
path: root/sensors/HalProxy.cpp
blob: 58509eb577d3fe4fb09765c7c0ca8f3ffc13c9b3 (plain) (tree)
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789


































































































































































































                                                                                                    






                                                                                                 














                                                                                                    






                                                                                                 



                                                                  
                                                                        























                                                                                             
                                              






















































































































































































































































































































































































































































































































































                                                                                                    
/*
 * Copyright (C) 2019 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "HalProxy.h"

#include <android/hardware/sensors/2.0/types.h>

#include <android-base/file.h>
#include "hardware_legacy/power.h"

#include <dlfcn.h>

#include <cinttypes>
#include <cmath>
#include <fstream>
#include <functional>
#include <thread>

namespace android {
namespace hardware {
namespace sensors {
namespace V2_1 {
namespace implementation {

using ::android::hardware::sensors::V1_0::Result;
using ::android::hardware::sensors::V2_0::EventQueueFlagBits;
using ::android::hardware::sensors::V2_0::WakeLockQueueFlagBits;
using ::android::hardware::sensors::V2_0::implementation::getTimeNow;
using ::android::hardware::sensors::V2_0::implementation::kWakelockTimeoutNs;

typedef V2_0::implementation::ISensorsSubHal*(SensorsHalGetSubHalFunc)(uint32_t*);
typedef V2_1::implementation::ISensorsSubHal*(SensorsHalGetSubHalV2_1Func)(uint32_t*);

static constexpr int32_t kBitsAfterSubHalIndex = 24;

/**
 * Set the subhal index as first byte of sensor handle and return this modified version.
 *
 * @param sensorHandle The sensor handle to modify.
 * @param subHalIndex The index in the hal proxy of the sub hal this sensor belongs to.
 *
 * @return The modified sensor handle.
 */
int32_t setSubHalIndex(int32_t sensorHandle, size_t subHalIndex) {
    return sensorHandle | (static_cast<int32_t>(subHalIndex) << kBitsAfterSubHalIndex);
}

/**
 * Extract the subHalIndex from sensorHandle.
 *
 * @param sensorHandle The sensorHandle to extract from.
 *
 * @return The subhal index.
 */
size_t extractSubHalIndex(int32_t sensorHandle) {
    return static_cast<size_t>(sensorHandle >> kBitsAfterSubHalIndex);
}

/**
 * Convert nanoseconds to milliseconds.
 *
 * @param nanos The nanoseconds input.
 *
 * @return The milliseconds count.
 */
int64_t msFromNs(int64_t nanos) {
    constexpr int64_t nanosecondsInAMillsecond = 1000000;
    return nanos / nanosecondsInAMillsecond;
}

bool patchXiaomiPickupSensor(V2_1::SensorInfo& sensor) {
    if (sensor.typeAsString != "xiaomi.sensor.pickup") {
        return true;
    }

    /*
     * Implement only the wake-up version of this sensor.
     */
    if (!(sensor.flags & V1_0::SensorFlagBits::WAKE_UP)) {
        return false;
    }

    sensor.type = V2_1::SensorType::PICK_UP_GESTURE;
    sensor.typeAsString = SENSOR_STRING_TYPE_PICK_UP_GESTURE;
    sensor.maxRange = 1;

    return true;
}

HalProxy::HalProxy() {
    const char* kMultiHalConfigFile = "/vendor/etc/sensors/hals.conf";
    initializeSubHalListFromConfigFile(kMultiHalConfigFile);
    init();
}

HalProxy::HalProxy(std::vector<ISensorsSubHalV2_0*>& subHalList) {
    for (ISensorsSubHalV2_0* subHal : subHalList) {
        mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
    }

    init();
}

HalProxy::HalProxy(std::vector<ISensorsSubHalV2_0*>& subHalList,
                   std::vector<ISensorsSubHalV2_1*>& subHalListV2_1) {
    for (ISensorsSubHalV2_0* subHal : subHalList) {
        mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
    }

    for (ISensorsSubHalV2_1* subHal : subHalListV2_1) {
        mSubHalList.push_back(std::make_unique<SubHalWrapperV2_1>(subHal));
    }

    init();
}

HalProxy::~HalProxy() {
    stopThreads();
}

Return<void> HalProxy::getSensorsList_2_1(ISensorsV2_1::getSensorsList_2_1_cb _hidl_cb) {
    std::vector<V2_1::SensorInfo> sensors;
    for (const auto& iter : mSensors) {
        sensors.push_back(iter.second);
    }
    _hidl_cb(sensors);
    return Void();
}

Return<void> HalProxy::getSensorsList(ISensorsV2_0::getSensorsList_cb _hidl_cb) {
    std::vector<V1_0::SensorInfo> sensors;
    for (const auto& iter : mSensors) {
        sensors.push_back(convertToOldSensorInfo(iter.second));
    }
    _hidl_cb(sensors);
    return Void();
}

Return<Result> HalProxy::setOperationMode(OperationMode mode) {
    Result result = Result::OK;
    size_t subHalIndex;
    for (subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) {
        result = mSubHalList[subHalIndex]->setOperationMode(mode);
        if (result != Result::OK) {
            ALOGE("setOperationMode failed for SubHal: %s",
                  mSubHalList[subHalIndex]->getName().c_str());
            break;
        }
    }

    if (result != Result::OK) {
        // Reset the subhal operation modes that have been flipped
        for (size_t i = 0; i < subHalIndex; i++) {
            mSubHalList[i]->setOperationMode(mCurrentOperationMode);
        }
    } else {
        mCurrentOperationMode = mode;
    }
    return result;
}

Return<Result> HalProxy::activate(int32_t sensorHandle, bool enabled) {
    if (!isSubHalIndexValid(sensorHandle)) {
        return Result::BAD_VALUE;
    }
    return getSubHalForSensorHandle(sensorHandle)
            ->activate(clearSubHalIndex(sensorHandle), enabled);
}

Return<Result> HalProxy::initialize_2_1(
        const ::android::hardware::MQDescriptorSync<V2_1::Event>& eventQueueDescriptor,
        const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
        const sp<V2_1::ISensorsCallback>& sensorsCallback) {
    sp<ISensorsCallbackWrapperBase> dynamicCallback =
            new ISensorsCallbackWrapperV2_1(sensorsCallback);

    // Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
    auto eventQueue =
            std::make_unique<EventMessageQueueV2_1>(eventQueueDescriptor, true /* resetPointers */);
    std::unique_ptr<EventMessageQueueWrapperBase> queue =
            std::make_unique<EventMessageQueueWrapperV2_1>(eventQueue);

    // Create the Wake Lock FMQ from the wakeLockDescriptor. Reset the read/write positions.
    auto hidlWakeLockQueue =
            std::make_unique<WakeLockMessageQueue>(wakeLockDescriptor, true /* resetPointers */);
    std::unique_ptr<WakeLockMessageQueueWrapperBase> wakeLockQueue =
            std::make_unique<WakeLockMessageQueueWrapperHidl>(hidlWakeLockQueue);

    return initializeCommon(queue, wakeLockQueue, dynamicCallback);
}

Return<Result> HalProxy::initialize(
        const ::android::hardware::MQDescriptorSync<V1_0::Event>& eventQueueDescriptor,
        const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
        const sp<V2_0::ISensorsCallback>& sensorsCallback) {
    sp<ISensorsCallbackWrapperBase> dynamicCallback =
            new ISensorsCallbackWrapperV2_0(sensorsCallback);

    // Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
    auto eventQueue =
            std::make_unique<EventMessageQueueV2_0>(eventQueueDescriptor, true /* resetPointers */);
    std::unique_ptr<EventMessageQueueWrapperBase> queue =
            std::make_unique<EventMessageQueueWrapperV1_0>(eventQueue);

    // Create the Wake Lock FMQ from the wakeLockDescriptor. Reset the read/write positions.
    auto hidlWakeLockQueue =
            std::make_unique<WakeLockMessageQueue>(wakeLockDescriptor, true /* resetPointers */);
    std::unique_ptr<WakeLockMessageQueueWrapperBase> wakeLockQueue =
            std::make_unique<WakeLockMessageQueueWrapperHidl>(hidlWakeLockQueue);

    return initializeCommon(queue, wakeLockQueue, dynamicCallback);
}

Return<Result> HalProxy::initializeCommon(
        std::unique_ptr<EventMessageQueueWrapperBase>& eventQueue,
        std::unique_ptr<WakeLockMessageQueueWrapperBase>& wakeLockQueue,
        const sp<ISensorsCallbackWrapperBase>& sensorsCallback) {
    Result result = Result::OK;

    stopThreads();
    resetSharedWakelock();

    // So that the pending write events queue can be cleared safely and when we start threads
    // again we do not get new events until after initialize resets the subhals.
    disableAllSensors();

    // Clears the queue if any events were pending write before.
    mPendingWriteEventsQueue = std::queue<std::pair<std::vector<V2_1::Event>, size_t>>();
    mSizePendingWriteEventsQueue = 0;

    // Clears previously connected dynamic sensors
    mDynamicSensors.clear();

    mDynamicSensorsCallback = sensorsCallback;

    // Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
    mEventQueue = std::move(eventQueue);

    // Create the Wake Lock FMQ that is used by the framework to communicate whenever WAKE_UP
    // events have been successfully read and handled by the framework.
    mWakeLockQueue = std::move(wakeLockQueue);

    if (mEventQueueFlag != nullptr) {
        EventFlag::deleteEventFlag(&mEventQueueFlag);
    }
    if (mWakelockQueueFlag != nullptr) {
        EventFlag::deleteEventFlag(&mWakelockQueueFlag);
    }
    if (EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag) != OK) {
        result = Result::BAD_VALUE;
    }
    if (EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakelockQueueFlag) != OK) {
        result = Result::BAD_VALUE;
    }
    if (!mDynamicSensorsCallback || !mEventQueue || !mWakeLockQueue || mEventQueueFlag == nullptr) {
        result = Result::BAD_VALUE;
    }

    mThreadsRun.store(true);

    mPendingWritesThread = std::thread(startPendingWritesThread, this);
    mWakelockThread = std::thread(startWakelockThread, this);

    for (size_t i = 0; i < mSubHalList.size(); i++) {
        Result currRes = mSubHalList[i]->initialize(this, this, i);
        if (currRes != Result::OK) {
            result = currRes;
            ALOGE("Subhal '%s' failed to initialize.", mSubHalList[i]->getName().c_str());
            break;
        }
    }

    mCurrentOperationMode = OperationMode::NORMAL;

    return result;
}

Return<Result> HalProxy::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
                               int64_t maxReportLatencyNs) {
    if (!isSubHalIndexValid(sensorHandle)) {
        return Result::BAD_VALUE;
    }
    return getSubHalForSensorHandle(sensorHandle)
            ->batch(clearSubHalIndex(sensorHandle), samplingPeriodNs, maxReportLatencyNs);
}

Return<Result> HalProxy::flush(int32_t sensorHandle) {
    if (!isSubHalIndexValid(sensorHandle)) {
        return Result::BAD_VALUE;
    }
    return getSubHalForSensorHandle(sensorHandle)->flush(clearSubHalIndex(sensorHandle));
}

Return<Result> HalProxy::injectSensorData_2_1(const V2_1::Event& event) {
    return injectSensorData(convertToOldEvent(event));
}

Return<Result> HalProxy::injectSensorData(const V1_0::Event& event) {
    Result result = Result::OK;
    if (mCurrentOperationMode == OperationMode::NORMAL &&
        event.sensorType != V1_0::SensorType::ADDITIONAL_INFO) {
        ALOGE("An event with type != ADDITIONAL_INFO passed to injectSensorData while operation"
              " mode was NORMAL.");
        result = Result::BAD_VALUE;
    }
    if (result == Result::OK) {
        V1_0::Event subHalEvent = event;
        if (!isSubHalIndexValid(event.sensorHandle)) {
            return Result::BAD_VALUE;
        }
        subHalEvent.sensorHandle = clearSubHalIndex(event.sensorHandle);
        result = getSubHalForSensorHandle(event.sensorHandle)
                         ->injectSensorData(convertToNewEvent(subHalEvent));
    }
    return result;
}

Return<void> HalProxy::registerDirectChannel(const SharedMemInfo& mem,
                                             ISensorsV2_0::registerDirectChannel_cb _hidl_cb) {
    if (mDirectChannelSubHal == nullptr) {
        _hidl_cb(Result::INVALID_OPERATION, -1 /* channelHandle */);
    } else {
        mDirectChannelSubHal->registerDirectChannel(mem, _hidl_cb);
    }
    return Return<void>();
}

Return<Result> HalProxy::unregisterDirectChannel(int32_t channelHandle) {
    Result result;
    if (mDirectChannelSubHal == nullptr) {
        result = Result::INVALID_OPERATION;
    } else {
        result = mDirectChannelSubHal->unregisterDirectChannel(channelHandle);
    }
    return result;
}

Return<void> HalProxy::configDirectReport(int32_t sensorHandle, int32_t channelHandle,
                                          RateLevel rate,
                                          ISensorsV2_0::configDirectReport_cb _hidl_cb) {
    if (mDirectChannelSubHal == nullptr) {
        _hidl_cb(Result::INVALID_OPERATION, -1 /* reportToken */);
    } else if (sensorHandle == -1 && rate != RateLevel::STOP) {
        _hidl_cb(Result::BAD_VALUE, -1 /* reportToken */);
    } else {
        // -1 denotes all sensors should be disabled
        if (sensorHandle != -1) {
            sensorHandle = clearSubHalIndex(sensorHandle);
        }
        mDirectChannelSubHal->configDirectReport(sensorHandle, channelHandle, rate, _hidl_cb);
    }
    return Return<void>();
}

Return<void> HalProxy::debug(const hidl_handle& fd, const hidl_vec<hidl_string>& /*args*/) {
    if (fd.getNativeHandle() == nullptr || fd->numFds < 1) {
        ALOGE("%s: missing fd for writing", __FUNCTION__);
        return Void();
    }

    android::base::borrowed_fd writeFd = dup(fd->data[0]);

    std::ostringstream stream;
    stream << "===HalProxy===" << std::endl;
    stream << "Internal values:" << std::endl;
    stream << "  Threads are running: " << (mThreadsRun.load() ? "true" : "false") << std::endl;
    int64_t now = getTimeNow();
    stream << "  Wakelock timeout start time: " << msFromNs(now - mWakelockTimeoutStartTime)
           << " ms ago" << std::endl;
    stream << "  Wakelock timeout reset time: " << msFromNs(now - mWakelockTimeoutResetTime)
           << " ms ago" << std::endl;
    // TODO(b/142969448): Add logging for history of wakelock acquisition per subhal.
    stream << "  Wakelock ref count: " << mWakelockRefCount << std::endl;
    stream << "  # of events on pending write writes queue: " << mSizePendingWriteEventsQueue
           << std::endl;
    stream << " Most events seen on pending write events queue: "
           << mMostEventsObservedPendingWriteEventsQueue << std::endl;
    if (!mPendingWriteEventsQueue.empty()) {
        stream << "  Size of events list on front of pending writes queue: "
               << mPendingWriteEventsQueue.front().first.size() << std::endl;
    }
    stream << "  # of non-dynamic sensors across all subhals: " << mSensors.size() << std::endl;
    stream << "  # of dynamic sensors across all subhals: " << mDynamicSensors.size() << std::endl;
    stream << "SubHals (" << mSubHalList.size() << "):" << std::endl;
    for (auto& subHal : mSubHalList) {
        stream << "  Name: " << subHal->getName() << std::endl;
        stream << "  Debug dump: " << std::endl;
        android::base::WriteStringToFd(stream.str(), writeFd);
        subHal->debug(fd, {});
        stream.str("");
        stream << std::endl;
    }
    android::base::WriteStringToFd(stream.str(), writeFd);
    return Return<void>();
}

Return<void> HalProxy::onDynamicSensorsConnected(const hidl_vec<SensorInfo>& dynamicSensorsAdded,
                                                 int32_t subHalIndex) {
    std::vector<SensorInfo> sensors;
    {
        std::lock_guard<std::mutex> lock(mDynamicSensorsMutex);
        for (SensorInfo sensor : dynamicSensorsAdded) {
            if (!subHalIndexIsClear(sensor.sensorHandle)) {
                ALOGE("Dynamic sensor added %s had sensorHandle with first byte not 0.",
                      sensor.name.c_str());
            } else {
                sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex);
                mDynamicSensors[sensor.sensorHandle] = sensor;
                sensors.push_back(sensor);
            }
        }
    }
    mDynamicSensorsCallback->onDynamicSensorsConnected(sensors);
    return Return<void>();
}

Return<void> HalProxy::onDynamicSensorsDisconnected(
        const hidl_vec<int32_t>& dynamicSensorHandlesRemoved, int32_t subHalIndex) {
    // TODO(b/143302327): Block this call until all pending events are flushed from queue
    std::vector<int32_t> sensorHandles;
    {
        std::lock_guard<std::mutex> lock(mDynamicSensorsMutex);
        for (int32_t sensorHandle : dynamicSensorHandlesRemoved) {
            if (!subHalIndexIsClear(sensorHandle)) {
                ALOGE("Dynamic sensorHandle removed had first byte not 0.");
            } else {
                sensorHandle = setSubHalIndex(sensorHandle, subHalIndex);
                if (mDynamicSensors.find(sensorHandle) != mDynamicSensors.end()) {
                    mDynamicSensors.erase(sensorHandle);
                    sensorHandles.push_back(sensorHandle);
                }
            }
        }
    }
    mDynamicSensorsCallback->onDynamicSensorsDisconnected(sensorHandles);
    return Return<void>();
}

void HalProxy::initializeSubHalListFromConfigFile(const char* configFileName) {
    std::ifstream subHalConfigStream(configFileName);
    if (!subHalConfigStream) {
        ALOGE("Failed to load subHal config file: %s", configFileName);
    } else {
        std::string subHalLibraryFile;
        while (subHalConfigStream >> subHalLibraryFile) {
            void* handle = getHandleForSubHalSharedObject(subHalLibraryFile);
            if (handle == nullptr) {
                ALOGE("dlopen failed for library: %s", subHalLibraryFile.c_str());
            } else {
                SensorsHalGetSubHalFunc* sensorsHalGetSubHalPtr =
                        (SensorsHalGetSubHalFunc*)dlsym(handle, "sensorsHalGetSubHal");
                if (sensorsHalGetSubHalPtr != nullptr) {
                    std::function<SensorsHalGetSubHalFunc> sensorsHalGetSubHal =
                            *sensorsHalGetSubHalPtr;
                    uint32_t version;
                    ISensorsSubHalV2_0* subHal = sensorsHalGetSubHal(&version);
                    if (version != SUB_HAL_2_0_VERSION) {
                        ALOGE("SubHal version was not 2.0 for library: %s",
                              subHalLibraryFile.c_str());
                    } else {
                        ALOGV("Loaded SubHal from library: %s", subHalLibraryFile.c_str());
                        mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
                    }
                } else {
                    SensorsHalGetSubHalV2_1Func* getSubHalV2_1Ptr =
                            (SensorsHalGetSubHalV2_1Func*)dlsym(handle, "sensorsHalGetSubHal_2_1");

                    if (getSubHalV2_1Ptr == nullptr) {
                        ALOGE("Failed to locate sensorsHalGetSubHal function for library: %s",
                              subHalLibraryFile.c_str());
                    } else {
                        std::function<SensorsHalGetSubHalV2_1Func> sensorsHalGetSubHal_2_1 =
                                *getSubHalV2_1Ptr;
                        uint32_t version;
                        ISensorsSubHalV2_1* subHal = sensorsHalGetSubHal_2_1(&version);
                        if (version != SUB_HAL_2_1_VERSION) {
                            ALOGE("SubHal version was not 2.1 for library: %s",
                                  subHalLibraryFile.c_str());
                        } else {
                            ALOGV("Loaded SubHal from library: %s", subHalLibraryFile.c_str());
                            mSubHalList.push_back(std::make_unique<SubHalWrapperV2_1>(subHal));
                        }
                    }
                }
            }
        }
    }
}

void HalProxy::initializeSensorList() {
    for (size_t subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) {
        auto result = mSubHalList[subHalIndex]->getSensorsList([&](const auto& list) {
            for (SensorInfo sensor : list) {
                if (!subHalIndexIsClear(sensor.sensorHandle)) {
                    ALOGE("SubHal sensorHandle's first byte was not 0");
                } else {
                    ALOGV("Loaded sensor: %s", sensor.name.c_str());
                    sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex);
                    setDirectChannelFlags(&sensor, mSubHalList[subHalIndex]);
                    bool keep = patchXiaomiPickupSensor(sensor);
                    if (!keep) {
                        continue;
                    }

                    mSensors[sensor.sensorHandle] = sensor;
                }
            }
        });
        if (!result.isOk()) {
            ALOGE("getSensorsList call failed for SubHal: %s",
                  mSubHalList[subHalIndex]->getName().c_str());
        }
    }
}

void* HalProxy::getHandleForSubHalSharedObject(const std::string& filename) {
    static const std::string kSubHalShareObjectLocations[] = {
            "",  // Default locations will be searched
#ifdef __LP64__
            "/vendor/lib64/hw/", "/odm/lib64/hw/"
#else
            "/vendor/lib/hw/", "/odm/lib/hw/"
#endif
    };

    for (const std::string& dir : kSubHalShareObjectLocations) {
        void* handle = dlopen((dir + filename).c_str(), RTLD_NOW);
        if (handle != nullptr) {
            return handle;
        }
    }
    return nullptr;
}

void HalProxy::init() {
    initializeSensorList();
}

void HalProxy::stopThreads() {
    mThreadsRun.store(false);
    if (mEventQueueFlag != nullptr && mEventQueue != nullptr) {
        size_t numToRead = mEventQueue->availableToRead();
        std::vector<Event> events(numToRead);
        mEventQueue->read(events.data(), numToRead);
        mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::EVENTS_READ));
    }
    if (mWakelockQueueFlag != nullptr && mWakeLockQueue != nullptr) {
        uint32_t kZero = 0;
        mWakeLockQueue->write(&kZero);
        mWakelockQueueFlag->wake(static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN));
    }
    mWakelockCV.notify_one();
    mEventQueueWriteCV.notify_one();
    if (mPendingWritesThread.joinable()) {
        mPendingWritesThread.join();
    }
    if (mWakelockThread.joinable()) {
        mWakelockThread.join();
    }
}

void HalProxy::disableAllSensors() {
    for (const auto& sensorEntry : mSensors) {
        int32_t sensorHandle = sensorEntry.first;
        activate(sensorHandle, false /* enabled */);
    }
    std::lock_guard<std::mutex> dynamicSensorsLock(mDynamicSensorsMutex);
    for (const auto& sensorEntry : mDynamicSensors) {
        int32_t sensorHandle = sensorEntry.first;
        activate(sensorHandle, false /* enabled */);
    }
}

void HalProxy::startPendingWritesThread(HalProxy* halProxy) {
    halProxy->handlePendingWrites();
}

void HalProxy::handlePendingWrites() {
    // TODO(b/143302327): Find a way to optimize locking strategy maybe using two mutexes instead of
    // one.
    std::unique_lock<std::mutex> lock(mEventQueueWriteMutex);
    while (mThreadsRun.load()) {
        mEventQueueWriteCV.wait(
                lock, [&] { return !mPendingWriteEventsQueue.empty() || !mThreadsRun.load(); });
        if (mThreadsRun.load()) {
            std::vector<Event>& pendingWriteEvents = mPendingWriteEventsQueue.front().first;
            size_t numWakeupEvents = mPendingWriteEventsQueue.front().second;
            size_t eventQueueSize = mEventQueue->getQuantumCount();
            size_t numToWrite = std::min(pendingWriteEvents.size(), eventQueueSize);
            lock.unlock();
            if (!mEventQueue->writeBlocking(
                        pendingWriteEvents.data(), numToWrite,
                        static_cast<uint32_t>(EventQueueFlagBits::EVENTS_READ),
                        static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS),
                        kPendingWriteTimeoutNs, mEventQueueFlag)) {
                ALOGE("Dropping %zu events after blockingWrite failed.", numToWrite);
                if (numWakeupEvents > 0) {
                    if (pendingWriteEvents.size() > eventQueueSize) {
                        decrementRefCountAndMaybeReleaseWakelock(
                                countNumWakeupEvents(pendingWriteEvents, eventQueueSize));
                    } else {
                        decrementRefCountAndMaybeReleaseWakelock(numWakeupEvents);
                    }
                }
            }
            lock.lock();
            mSizePendingWriteEventsQueue -= numToWrite;
            if (pendingWriteEvents.size() > eventQueueSize) {
                // TODO(b/143302327): Check if this erase operation is too inefficient. It will copy
                // all the events ahead of it down to fill gap off array at front after the erase.
                pendingWriteEvents.erase(pendingWriteEvents.begin(),
                                         pendingWriteEvents.begin() + eventQueueSize);
            } else {
                mPendingWriteEventsQueue.pop();
            }
        }
    }
}

void HalProxy::startWakelockThread(HalProxy* halProxy) {
    halProxy->handleWakelocks();
}

void HalProxy::handleWakelocks() {
    std::unique_lock<std::recursive_mutex> lock(mWakelockMutex);
    while (mThreadsRun.load()) {
        mWakelockCV.wait(lock, [&] { return mWakelockRefCount > 0 || !mThreadsRun.load(); });
        if (mThreadsRun.load()) {
            int64_t timeLeft;
            if (sharedWakelockDidTimeout(&timeLeft)) {
                resetSharedWakelock();
            } else {
                uint32_t numWakeLocksProcessed;
                lock.unlock();
                bool success = mWakeLockQueue->readBlocking(
                        &numWakeLocksProcessed, 1, 0,
                        static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN), timeLeft);
                lock.lock();
                if (success) {
                    decrementRefCountAndMaybeReleaseWakelock(
                            static_cast<size_t>(numWakeLocksProcessed));
                }
            }
        }
    }
    resetSharedWakelock();
}

bool HalProxy::sharedWakelockDidTimeout(int64_t* timeLeft) {
    bool didTimeout;
    int64_t duration = getTimeNow() - mWakelockTimeoutStartTime;
    if (duration > kWakelockTimeoutNs) {
        didTimeout = true;
    } else {
        didTimeout = false;
        *timeLeft = kWakelockTimeoutNs - duration;
    }
    return didTimeout;
}

void HalProxy::resetSharedWakelock() {
    std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
    decrementRefCountAndMaybeReleaseWakelock(mWakelockRefCount);
    mWakelockTimeoutResetTime = getTimeNow();
}

void HalProxy::postEventsToMessageQueue(const std::vector<Event>& events, size_t numWakeupEvents,
                                        V2_0::implementation::ScopedWakelock wakelock) {
    size_t numToWrite = 0;
    std::lock_guard<std::mutex> lock(mEventQueueWriteMutex);
    if (wakelock.isLocked()) {
        incrementRefCountAndMaybeAcquireWakelock(numWakeupEvents);
    }
    if (mPendingWriteEventsQueue.empty()) {
        numToWrite = std::min(events.size(), mEventQueue->availableToWrite());
        if (numToWrite > 0) {
            if (mEventQueue->write(events.data(), numToWrite)) {
                // TODO(b/143302327): While loop if mEventQueue->avaiableToWrite > 0 to possibly fit
                // in more writes immediately
                mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS));
            } else {
                numToWrite = 0;
            }
        }
    }
    size_t numLeft = events.size() - numToWrite;
    if (numToWrite < events.size() &&
        mSizePendingWriteEventsQueue + numLeft <= kMaxSizePendingWriteEventsQueue) {
        std::vector<Event> eventsLeft(events.begin() + numToWrite, events.end());
        mPendingWriteEventsQueue.push({eventsLeft, numWakeupEvents});
        mSizePendingWriteEventsQueue += numLeft;
        mMostEventsObservedPendingWriteEventsQueue =
                std::max(mMostEventsObservedPendingWriteEventsQueue, mSizePendingWriteEventsQueue);
        mEventQueueWriteCV.notify_one();
    }
}

bool HalProxy::incrementRefCountAndMaybeAcquireWakelock(size_t delta,
                                                        int64_t* timeoutStart /* = nullptr */) {
    if (!mThreadsRun.load()) return false;
    std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
    if (mWakelockRefCount == 0) {
        acquire_wake_lock(PARTIAL_WAKE_LOCK, kWakelockName);
        mWakelockCV.notify_one();
    }
    mWakelockTimeoutStartTime = getTimeNow();
    mWakelockRefCount += delta;
    if (timeoutStart != nullptr) {
        *timeoutStart = mWakelockTimeoutStartTime;
    }
    return true;
}

void HalProxy::decrementRefCountAndMaybeReleaseWakelock(size_t delta,
                                                        int64_t timeoutStart /* = -1 */) {
    if (!mThreadsRun.load()) return;
    std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
    if (delta > mWakelockRefCount) {
        ALOGE("Decrementing wakelock ref count by %zu when count is %zu",
              delta, mWakelockRefCount);
    }
    if (timeoutStart == -1) timeoutStart = mWakelockTimeoutResetTime;
    if (mWakelockRefCount == 0 || timeoutStart < mWakelockTimeoutResetTime) return;
    mWakelockRefCount -= std::min(mWakelockRefCount, delta);
    if (mWakelockRefCount == 0) {
        release_wake_lock(kWakelockName);
    }
}

void HalProxy::setDirectChannelFlags(SensorInfo* sensorInfo,
                                     std::shared_ptr<ISubHalWrapperBase> subHal) {
    bool sensorSupportsDirectChannel =
            (sensorInfo->flags & (V1_0::SensorFlagBits::MASK_DIRECT_REPORT |
                                  V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL)) != 0;
    if (mDirectChannelSubHal == nullptr && sensorSupportsDirectChannel) {
        mDirectChannelSubHal = subHal;
    } else if (mDirectChannelSubHal != nullptr && subHal != mDirectChannelSubHal) {
        // disable direct channel capability for sensors in subHals that are not
        // the only one we will enable
        sensorInfo->flags &= ~(V1_0::SensorFlagBits::MASK_DIRECT_REPORT |
                               V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL);
    }
}

std::shared_ptr<ISubHalWrapperBase> HalProxy::getSubHalForSensorHandle(int32_t sensorHandle) {
    return mSubHalList[extractSubHalIndex(sensorHandle)];
}

bool HalProxy::isSubHalIndexValid(int32_t sensorHandle) {
    return extractSubHalIndex(sensorHandle) < mSubHalList.size();
}

size_t HalProxy::countNumWakeupEvents(const std::vector<Event>& events, size_t n) {
    size_t numWakeupEvents = 0;
    for (size_t i = 0; i < n; i++) {
        int32_t sensorHandle = events[i].sensorHandle;
        if (mSensors[sensorHandle].flags & static_cast<uint32_t>(V1_0::SensorFlagBits::WAKE_UP)) {
            numWakeupEvents++;
        }
    }
    return numWakeupEvents;
}

int32_t HalProxy::clearSubHalIndex(int32_t sensorHandle) {
    return sensorHandle & (~kSensorHandleSubHalIndexMask);
}

bool HalProxy::subHalIndexIsClear(int32_t sensorHandle) {
    return (sensorHandle & kSensorHandleSubHalIndexMask) == 0;
}

}  // namespace implementation
}  // namespace V2_1
}  // namespace sensors
}  // namespace hardware
}  // namespace android