aboutsummaryrefslogtreecommitdiff
path: root/gpt-utils/gpt-utils.cpp
blob: 9f7b34914419b51f39b6356a5d27dcc0236ded4c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
/*
 * Copyright (c) 2013,2016,2020 The Linux Foundation. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 *       copyright notice, this list of conditions and the following
 *       disclaimer in the documentation and/or other materials provided
 *       with the distribution.
 *     * Neither the name of The Linux Foundation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#define _LARGEFILE64_SOURCE /* enable lseek64() */

/******************************************************************************
 * INCLUDE SECTION
 ******************************************************************************/
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/fs.h>
#include <limits.h>
#include <dirent.h>
#include <linux/kernel.h>
#include <map>
#include <vector>
#include <string>
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>


#define LOG_TAG "gpt-utils"
#include <log/log.h>
#include <cutils/properties.h>
#include "gpt-utils.h"
#include <zlib.h>
#include <endian.h>


/******************************************************************************
 * DEFINE SECTION
 ******************************************************************************/
#define BLK_DEV_FILE    "/dev/block/mmcblk0"
/* list the names of the backed-up partitions to be swapped */
/* extension used for the backup partitions - tzbak, abootbak, etc. */
#define BAK_PTN_NAME_EXT    "bak"
#define XBL_PRIMARY         "/dev/block/bootdevice/by-name/xbl"
#define XBL_BACKUP          "/dev/block/bootdevice/by-name/xblbak"
#define XBL_AB_PRIMARY      "/dev/block/bootdevice/by-name/xbl_a"
#define XBL_AB_SECONDARY    "/dev/block/bootdevice/by-name/xbl_b"
/* GPT defines */
#define MAX_LUNS                    26
//This will allow us to get the root lun path from the path to the partition.
//i.e: from /dev/block/sdaXXX get /dev/block/sda. The assumption here is that
//the boot critical luns lie between sda to sdz which is acceptable because
//only user added external disks,etc would lie beyond that limit which do not
//contain partitions that interest us here.
#define PATH_TRUNCATE_LOC (sizeof("/dev/block/sda") - 1)

//From /dev/block/sda get just sda
#define LUN_NAME_START_LOC (sizeof("/dev/block/") - 1)
#define BOOT_LUN_A_ID 1
#define BOOT_LUN_B_ID 2
/******************************************************************************
 * MACROS
 ******************************************************************************/


#define GET_4_BYTES(ptr)    ((uint32_t) *((uint8_t *)(ptr)) | \
        ((uint32_t) *((uint8_t *)(ptr) + 1) << 8) | \
        ((uint32_t) *((uint8_t *)(ptr) + 2) << 16) | \
        ((uint32_t) *((uint8_t *)(ptr) + 3) << 24))

#define GET_8_BYTES(ptr)    ((uint64_t) *((uint8_t *)(ptr)) | \
        ((uint64_t) *((uint8_t *)(ptr) + 1) << 8) | \
        ((uint64_t) *((uint8_t *)(ptr) + 2) << 16) | \
        ((uint64_t) *((uint8_t *)(ptr) + 3) << 24) | \
        ((uint64_t) *((uint8_t *)(ptr) + 4) << 32) | \
        ((uint64_t) *((uint8_t *)(ptr) + 5) << 40) | \
        ((uint64_t) *((uint8_t *)(ptr) + 6) << 48) | \
        ((uint64_t) *((uint8_t *)(ptr) + 7) << 56))

#define PUT_4_BYTES(ptr, y)   *((uint8_t *)(ptr)) = (y) & 0xff; \
        *((uint8_t *)(ptr) + 1) = ((y) >> 8) & 0xff; \
        *((uint8_t *)(ptr) + 2) = ((y) >> 16) & 0xff; \
        *((uint8_t *)(ptr) + 3) = ((y) >> 24) & 0xff;

/******************************************************************************
 * TYPES
 ******************************************************************************/
using namespace std;
enum gpt_state {
    GPT_OK = 0,
    GPT_BAD_SIGNATURE,
    GPT_BAD_CRC
};
//List of LUN's containing boot critical images.
//Required in the case of UFS devices
struct update_data {
     char lun_list[MAX_LUNS][PATH_MAX];
     uint32_t num_valid_entries;
};

int32_t set_boot_lun(char *sg_dev,uint8_t boot_lun_id);
/******************************************************************************
 * FUNCTIONS
 ******************************************************************************/
/**
 *  ==========================================================================
 *
 *  \brief  Read/Write len bytes from/to block dev
 *
 *  \param [in] fd      block dev file descriptor (returned from open)
 *  \param [in] rw      RW flag: 0 - read, != 0 - write
 *  \param [in] offset  block dev offset [bytes] - RW start position
 *  \param [in] buf     Pointer to the buffer containing the data
 *  \param [in] len     RW size in bytes. Buf must be at least that big
 *
 *  \return  0 on success
 *
 *  ==========================================================================
 */
static int blk_rw(int fd, int rw, int64_t offset, uint8_t *buf, unsigned len)
{
    int r;

    if (lseek64(fd, offset, SEEK_SET) < 0) {
        fprintf(stderr, "block dev lseek64 %" PRIi64 " failed: %s\n", offset,
                strerror(errno));
        return -1;
    }

    if (rw)
        r = write(fd, buf, len);
    else
        r = read(fd, buf, len);

    if (r < 0)
        fprintf(stderr, "block dev %s failed: %s\n", rw ? "write" : "read",
                strerror(errno));
    else
        r = 0;

    return r;
}



/**
 *  ==========================================================================
 *
 *  \brief  Search within GPT for partition entry with the given name
 *  or it's backup twin (name-bak).
 *
 *  \param [in] ptn_name        Partition name to seek
 *  \param [in] pentries_start  Partition entries array start pointer
 *  \param [in] pentries_end    Partition entries array end pointer
 *  \param [in] pentry_size     Single partition entry size [bytes]
 *
 *  \return  First partition entry pointer that matches the name or NULL
 *
 *  ==========================================================================
 */
static uint8_t *gpt_pentry_seek(const char *ptn_name,
                                const uint8_t *pentries_start,
                                const uint8_t *pentries_end,
                                uint32_t pentry_size)
{
    char     *pentry_name;
    unsigned  len = strlen(ptn_name);
    unsigned  i;
    char      name8[MAX_GPT_NAME_SIZE] = {0}; // initialize with null

    for (pentry_name = (char *) (pentries_start + PARTITION_NAME_OFFSET);
         pentry_name < (char *) pentries_end;
         pentry_name += pentry_size) {

        /* Partition names in GPT are UTF-16 - ignoring UTF-16 2nd byte */
        for (i = 0; i < sizeof(name8) / 2; i++)
            name8[i] = pentry_name[i * 2];
        name8[i] = '\0';

        if (!strncmp(ptn_name, name8, len)) {
            if (name8[len] == 0 || !strcmp(&name8[len], BAK_PTN_NAME_EXT))
                return (uint8_t *) (pentry_name - PARTITION_NAME_OFFSET);
        }
    }

    return NULL;
}



/**
 *  ==========================================================================
 *
 *  \brief  Swaps boot chain in GPT partition entries array
 *
 *  \param [in] pentries_start  Partition entries array start
 *  \param [in] pentries_end    Partition entries array end
 *  \param [in] pentry_size     Single partition entry size
 *
 *  \return  0 on success, 1 if no backup partitions found
 *
 *  ==========================================================================
 */
static int gpt_boot_chain_swap(const uint8_t *pentries_start,
                                const uint8_t *pentries_end,
                                uint32_t pentry_size)
{
    const char ptn_swap_list[][MAX_GPT_NAME_SIZE] = { PTN_SWAP_LIST };

    int backup_not_found = 1;
    unsigned i;

    for (i = 0; i < ARRAY_SIZE(ptn_swap_list); i++) {
        uint8_t *ptn_entry;
        uint8_t *ptn_bak_entry;
        uint8_t ptn_swap[PTN_ENTRY_SIZE];
        //Skip the xbl, multiimgoem, multiimgqti partitions on UFS devices. That is handled
        //seperately.
        if ((gpt_utils_is_ufs_device() && !strncmp(ptn_swap_list[i],PTN_XBL,strlen(PTN_XBL)))
            || !strncmp(ptn_swap_list[i],PTN_MULTIIMGOEM,strlen(PTN_MULTIIMGOEM))
            || !strncmp(ptn_swap_list[i],PTN_MULTIIMGQTI,strlen(PTN_MULTIIMGQTI)))
            continue;

        ptn_entry = gpt_pentry_seek(ptn_swap_list[i], pentries_start,
                        pentries_end, pentry_size);
        if (ptn_entry == NULL)
            continue;

        ptn_bak_entry = gpt_pentry_seek(ptn_swap_list[i],
                        ptn_entry + pentry_size, pentries_end, pentry_size);
        if (ptn_bak_entry == NULL) {
            fprintf(stderr, "'%s' partition not backup - skip safe update\n",
                    ptn_swap_list[i]);
            continue;
        }

        /* swap primary <-> backup partition entries */
        memcpy(ptn_swap, ptn_entry, PTN_ENTRY_SIZE);
        memcpy(ptn_entry, ptn_bak_entry, PTN_ENTRY_SIZE);
        memcpy(ptn_bak_entry, ptn_swap, PTN_ENTRY_SIZE);
        backup_not_found = 0;
    }

    return backup_not_found;
}



/**
 *  ==========================================================================
 *
 *  \brief  Sets secondary GPT boot chain
 *
 *  \param [in] fd    block dev file descriptor
 *  \param [in] boot  Boot chain to switch to
 *
 *  \return  0 on success
 *
 *  ==========================================================================
 */
static int gpt2_set_boot_chain(int fd, enum boot_chain boot)
{
    int64_t  gpt2_header_offset;
    uint64_t pentries_start_offset;
    uint32_t gpt_header_size;
    uint32_t pentry_size;
    uint32_t pentries_array_size;

    uint8_t *gpt_header = NULL;
    uint8_t  *pentries = NULL;
    uint32_t crc;
    uint32_t crc_zero;
    uint32_t blk_size = 0;
    int r;


    crc_zero = crc32(0L, Z_NULL, 0);
    if (ioctl(fd, BLKSSZGET, &blk_size) != 0) {
            fprintf(stderr, "Failed to get GPT device block size: %s\n",
                            strerror(errno));
            r = -1;
            goto EXIT;
    }
    gpt_header = (uint8_t*)malloc(blk_size);
    if (!gpt_header) {
            fprintf(stderr, "Failed to allocate memory to hold GPT block\n");
            r = -1;
            goto EXIT;
    }
    gpt2_header_offset = lseek64(fd, 0, SEEK_END) - blk_size;
    if (gpt2_header_offset < 0) {
        fprintf(stderr, "Getting secondary GPT header offset failed: %s\n",
                strerror(errno));
        r = -1;
        goto EXIT;
    }

    /* Read primary GPT header from block dev */
    r = blk_rw(fd, 0, blk_size, gpt_header, blk_size);

    if (r) {
            fprintf(stderr, "Failed to read primary GPT header from blk dev\n");
            goto EXIT;
    }
    pentries_start_offset =
        GET_8_BYTES(gpt_header + PENTRIES_OFFSET) * blk_size;
    pentry_size = GET_4_BYTES(gpt_header + PENTRY_SIZE_OFFSET);
    pentries_array_size =
        GET_4_BYTES(gpt_header + PARTITION_COUNT_OFFSET) * pentry_size;

    pentries = (uint8_t *) calloc(1, pentries_array_size);
    if (pentries == NULL) {
        fprintf(stderr,
                    "Failed to alloc memory for GPT partition entries array\n");
        r = -1;
        goto EXIT;
    }
    /* Read primary GPT partititon entries array from block dev */
    r = blk_rw(fd, 0, pentries_start_offset, pentries, pentries_array_size);
    if (r)
        goto EXIT;

    crc = crc32(crc_zero, pentries, pentries_array_size);
    if (GET_4_BYTES(gpt_header + PARTITION_CRC_OFFSET) != crc) {
        fprintf(stderr, "Primary GPT partition entries array CRC invalid\n");
        r = -1;
        goto EXIT;
    }

    /* Read secondary GPT header from block dev */
    r = blk_rw(fd, 0, gpt2_header_offset, gpt_header, blk_size);
    if (r)
        goto EXIT;

    gpt_header_size = GET_4_BYTES(gpt_header + HEADER_SIZE_OFFSET);
    pentries_start_offset =
        GET_8_BYTES(gpt_header + PENTRIES_OFFSET) * blk_size;

    if (boot == BACKUP_BOOT) {
        r = gpt_boot_chain_swap(pentries, pentries + pentries_array_size,
                                pentry_size);
        if (r)
            goto EXIT;
    }

    crc = crc32(crc_zero, pentries, pentries_array_size);
    PUT_4_BYTES(gpt_header + PARTITION_CRC_OFFSET, crc);

    /* header CRC is calculated with this field cleared */
    PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, 0);
    crc = crc32(crc_zero, gpt_header, gpt_header_size);
    PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, crc);

    /* Write the modified GPT header back to block dev */
    r = blk_rw(fd, 1, gpt2_header_offset, gpt_header, blk_size);
    if (!r)
        /* Write the modified GPT partititon entries array back to block dev */
        r = blk_rw(fd, 1, pentries_start_offset, pentries,
                    pentries_array_size);

EXIT:
    if(gpt_header)
            free(gpt_header);
    if (pentries)
            free(pentries);
    return r;
}

/**
 *  ==========================================================================
 *
 *  \brief  Checks GPT state (header signature and CRC)
 *
 *  \param [in] fd      block dev file descriptor
 *  \param [in] gpt     GPT header to be checked
 *  \param [out] state  GPT header state
 *
 *  \return  0 on success
 *
 *  ==========================================================================
 */
static int gpt_get_state(int fd, enum gpt_instance gpt, enum gpt_state *state)
{
    int64_t gpt_header_offset;
    uint32_t gpt_header_size;
    uint8_t  *gpt_header = NULL;
    uint32_t crc;
    uint32_t crc_zero;
    uint32_t blk_size = 0;

    *state = GPT_OK;

    crc_zero = crc32(0L, Z_NULL, 0);
    if (ioctl(fd, BLKSSZGET, &blk_size) != 0) {
            fprintf(stderr, "Failed to get GPT device block size: %s\n",
                            strerror(errno));
            goto error;
    }
    gpt_header = (uint8_t*)malloc(blk_size);
    if (!gpt_header) {
            fprintf(stderr, "gpt_get_state:Failed to alloc memory for header\n");
            goto error;
    }
    if (gpt == PRIMARY_GPT)
        gpt_header_offset = blk_size;
    else {
        gpt_header_offset = lseek64(fd, 0, SEEK_END) - blk_size;
        if (gpt_header_offset < 0) {
            fprintf(stderr, "gpt_get_state:Seek to end of GPT part fail\n");
            goto error;
        }
    }

    if (blk_rw(fd, 0, gpt_header_offset, gpt_header, blk_size)) {
        fprintf(stderr, "gpt_get_state: blk_rw failed\n");
        goto error;
    }
    if (memcmp(gpt_header, GPT_SIGNATURE, sizeof(GPT_SIGNATURE)))
        *state = GPT_BAD_SIGNATURE;
    gpt_header_size = GET_4_BYTES(gpt_header + HEADER_SIZE_OFFSET);

    crc = GET_4_BYTES(gpt_header + HEADER_CRC_OFFSET);
    /* header CRC is calculated with this field cleared */
    PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, 0);
    if (crc32(crc_zero, gpt_header, gpt_header_size) != crc)
        *state = GPT_BAD_CRC;
    free(gpt_header);
    return 0;
error:
    if (gpt_header)
            free(gpt_header);
    return -1;
}



/**
 *  ==========================================================================
 *
 *  \brief  Sets GPT header state (used to corrupt and fix GPT signature)
 *
 *  \param [in] fd     block dev file descriptor
 *  \param [in] gpt    GPT header to be checked
 *  \param [in] state  GPT header state to set (GPT_OK or GPT_BAD_SIGNATURE)
 *
 *  \return  0 on success
 *
 *  ==========================================================================
 */
static int gpt_set_state(int fd, enum gpt_instance gpt, enum gpt_state state)
{
    int64_t gpt_header_offset;
    uint32_t gpt_header_size;
    uint8_t  *gpt_header = NULL;
    uint32_t crc;
    uint32_t crc_zero;
    uint32_t blk_size = 0;

    crc_zero = crc32(0L, Z_NULL, 0);
    if (ioctl(fd, BLKSSZGET, &blk_size) != 0) {
            fprintf(stderr, "Failed to get GPT device block size: %s\n",
                            strerror(errno));
            goto error;
    }
    gpt_header = (uint8_t*)malloc(blk_size);
    if (!gpt_header) {
            fprintf(stderr, "Failed to alloc memory for gpt header\n");
            goto error;
    }
    if (gpt == PRIMARY_GPT)
        gpt_header_offset = blk_size;
    else {
        gpt_header_offset = lseek64(fd, 0, SEEK_END) - blk_size;
        if (gpt_header_offset < 0) {
            fprintf(stderr, "Failed to seek to end of GPT device\n");
            goto error;
        }
    }
    if (blk_rw(fd, 0, gpt_header_offset, gpt_header, blk_size)) {
        fprintf(stderr, "Failed to r/w gpt header\n");
        goto error;
    }
    if (state == GPT_OK)
        memcpy(gpt_header, GPT_SIGNATURE, sizeof(GPT_SIGNATURE));
    else if (state == GPT_BAD_SIGNATURE)
        *gpt_header = 0;
    else {
        fprintf(stderr, "gpt_set_state: Invalid state\n");
        goto error;
    }

    gpt_header_size = GET_4_BYTES(gpt_header + HEADER_SIZE_OFFSET);

    /* header CRC is calculated with this field cleared */
    PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, 0);
    crc = crc32(crc_zero, gpt_header, gpt_header_size);
    PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, crc);

    if (blk_rw(fd, 1, gpt_header_offset, gpt_header, blk_size)) {
        fprintf(stderr, "gpt_set_state: blk write failed\n");
        goto error;
    }
    return 0;
error:
    if(gpt_header)
           free(gpt_header);
    return -1;
}

int get_scsi_node_from_bootdevice(const char *bootdev_path,
                char *sg_node_path,
                size_t buf_size)
{
        char sg_dir_path[PATH_MAX] = {0};
        char real_path[PATH_MAX] = {0};
        DIR *scsi_dir = NULL;
        struct dirent *de;
        int node_found = 0;
        if (!bootdev_path || !sg_node_path) {
                fprintf(stderr, "%s : invalid argument\n",
                                 __func__);
                goto error;
        }
        if (readlink(bootdev_path, real_path, sizeof(real_path) - 1) < 0) {
                        fprintf(stderr, "failed to resolve link for %s(%s)\n",
                                        bootdev_path,
                                        strerror(errno));
                        goto error;
        }
        if(strlen(real_path) < PATH_TRUNCATE_LOC + 1){
            fprintf(stderr, "Unrecognized path :%s:\n",
                           real_path);
            goto error;
        }
        //For the safe side in case there are additional partitions on
        //the XBL lun we truncate the name.
        real_path[PATH_TRUNCATE_LOC] = '\0';
        if(strlen(real_path) < LUN_NAME_START_LOC + 1){
            fprintf(stderr, "Unrecognized truncated path :%s:\n",
                           real_path);
            goto error;
        }
        //This will give us /dev/block/sdb/device/scsi_generic
        //which contains a file sgY whose name gives us the path
        //to /dev/sgY which we return
        snprintf(sg_dir_path, sizeof(sg_dir_path) - 1,
                        "/sys/block/%s/device/scsi_generic",
                        &real_path[LUN_NAME_START_LOC]);
        scsi_dir = opendir(sg_dir_path);
        if (!scsi_dir) {
                fprintf(stderr, "%s : Failed to open %s(%s)\n",
                                __func__,
                                sg_dir_path,
                                strerror(errno));
                goto error;
        }
        while((de = readdir(scsi_dir))) {
                if (de->d_name[0] == '.')
                        continue;
                else if (!strncmp(de->d_name, "sg", 2)) {
                          snprintf(sg_node_path,
                                        buf_size -1,
                                        "/dev/%s",
                                        de->d_name);
                          fprintf(stderr, "%s:scsi generic node is :%s:\n",
                                          __func__,
                                          sg_node_path);
                          node_found = 1;
                          break;
                }
        }
        if(!node_found) {
                fprintf(stderr,"%s: Unable to locate scsi generic node\n",
                               __func__);
                goto error;
        }
        closedir(scsi_dir);
        return 0;
error:
        if (scsi_dir)
                closedir(scsi_dir);
        return -1;
}



//Swtich betwieen using either the primary or the backup
//boot LUN for boot. This is required since UFS boot partitions
//cannot have a backup GPT which is what we use for failsafe
//updates of the other 'critical' partitions. This function will
//not be invoked for emmc targets and on UFS targets is only required
//to be invoked for XBL.
//
//The algorithm to do this is as follows:
//- Find the real block device(eg: /dev/block/sdb) that corresponds
//  to the /dev/block/bootdevice/by-name/xbl(bak) symlink
//
//- Once we have the block device 'node' name(sdb in the above example)
//  use this node to to locate the scsi generic device that represents
//  it by checking the file /sys/block/sdb/device/scsi_generic/sgY
//
//- Once we locate sgY we call the query ioctl on /dev/sgy to switch
//the boot lun to either LUNA or LUNB
int gpt_utils_set_xbl_boot_partition(enum boot_chain chain)
{
        struct stat st;
        ///sys/block/sdX/device/scsi_generic/
        char sg_dev_node[PATH_MAX] = {0};
        uint8_t boot_lun_id = 0;
        const char *boot_dev = NULL;

        if (chain == BACKUP_BOOT) {
                boot_lun_id = BOOT_LUN_B_ID;
                if (!stat(XBL_BACKUP, &st))
                        boot_dev = XBL_BACKUP;
                else if (!stat(XBL_AB_SECONDARY, &st))
                        boot_dev = XBL_AB_SECONDARY;
                else {
                        fprintf(stderr, "%s: Failed to locate secondary xbl\n",
                                        __func__);
                        goto error;
                }
        } else if (chain == NORMAL_BOOT) {
                boot_lun_id = BOOT_LUN_A_ID;
                if (!stat(XBL_PRIMARY, &st))
                        boot_dev = XBL_PRIMARY;
                else if (!stat(XBL_AB_PRIMARY, &st))
                        boot_dev = XBL_AB_PRIMARY;
                else {
                        fprintf(stderr, "%s: Failed to locate primary xbl\n",
                                        __func__);
                        goto error;
                }
        } else {
                fprintf(stderr, "%s: Invalid boot chain id\n", __func__);
                goto error;
        }
        //We need either both xbl and xblbak or both xbl_a and xbl_b to exist at
        //the same time. If not the current configuration is invalid.
        if((stat(XBL_PRIMARY, &st) ||
                                stat(XBL_BACKUP, &st)) &&
                        (stat(XBL_AB_PRIMARY, &st) ||
                         stat(XBL_AB_SECONDARY, &st))) {
                fprintf(stderr, "%s:primary/secondary XBL prt not found(%s)\n",
                                __func__,
                                strerror(errno));
                goto error;
        }
        fprintf(stderr, "%s: setting %s lun as boot lun\n",
                        __func__,
                        boot_dev);
        if (get_scsi_node_from_bootdevice(boot_dev,
                                sg_dev_node,
                                sizeof(sg_dev_node))) {
                fprintf(stderr, "%s: Failed to get scsi node path for xblbak\n",
                                __func__);
                goto error;
        }
        /* set boot lun using /dev/sg or /dev/ufs-bsg* */
        if (set_boot_lun(sg_dev_node, boot_lun_id)) {
                fprintf(stderr, "%s: Failed to set xblbak as boot partition\n",
                                __func__);
                goto error;
        }
        return 0;
error:
        return -1;
}

int gpt_utils_is_ufs_device()
{
    char bootdevice[PROPERTY_VALUE_MAX] = {0};
    property_get("ro.boot.bootdevice", bootdevice, "N/A");
    if (strlen(bootdevice) < strlen(".ufshc") + 1)
        return 0;
    return (!strncmp(&bootdevice[strlen(bootdevice) - strlen(".ufshc")],
                            ".ufshc",
                            sizeof(".ufshc")));
}
//dev_path is the path to the block device that contains the GPT image that
//needs to be updated. This would be the device which holds one or more critical
//boot partitions and their backups. In the case of EMMC this function would
//be invoked only once on /dev/block/mmcblk1 since it holds the GPT image
//containing all the partitions For UFS devices it could potentially be
//invoked multiple times, once for each LUN containing critical image(s) and
//their backups
int prepare_partitions(enum boot_update_stage stage, const char *dev_path)
{
    int r = 0;
    int fd = -1;
    int is_ufs = gpt_utils_is_ufs_device();
    enum gpt_state gpt_prim, gpt_second;
    enum boot_update_stage internal_stage;
    struct stat xbl_partition_stat;

    if (!dev_path) {
        fprintf(stderr, "%s: Invalid dev_path\n",
                        __func__);
        r = -1;
        goto EXIT;
    }
    fd = open(dev_path, O_RDWR);
    if (fd < 0) {
        fprintf(stderr, "%s: Opening '%s' failed: %s\n",
                        __func__,
                       BLK_DEV_FILE,
                       strerror(errno));
        r = -1;
        goto EXIT;
    }
    r = gpt_get_state(fd, PRIMARY_GPT, &gpt_prim) ||
        gpt_get_state(fd, SECONDARY_GPT, &gpt_second);
    if (r) {
        fprintf(stderr, "%s: Getting GPT headers state failed\n",
                        __func__);
        goto EXIT;
    }

    /* These 2 combinations are unexpected and unacceptable */
    if (gpt_prim == GPT_BAD_CRC || gpt_second == GPT_BAD_CRC) {
        fprintf(stderr, "%s: GPT headers CRC corruption detected, aborting\n",
                        __func__);
        r = -1;
        goto EXIT;
    }
    if (gpt_prim == GPT_BAD_SIGNATURE && gpt_second == GPT_BAD_SIGNATURE) {
        fprintf(stderr, "%s: Both GPT headers corrupted, aborting\n",
                        __func__);
        r = -1;
        goto EXIT;
    }

    /* Check internal update stage according GPT headers' state */
    if (gpt_prim == GPT_OK && gpt_second == GPT_OK)
        internal_stage = UPDATE_MAIN;
    else if (gpt_prim == GPT_BAD_SIGNATURE)
        internal_stage = UPDATE_BACKUP;
    else if (gpt_second == GPT_BAD_SIGNATURE)
        internal_stage = UPDATE_FINALIZE;
    else {
        fprintf(stderr, "%s: Abnormal GPTs state: primary (%d), secondary (%d), "
                "aborting\n", __func__, gpt_prim, gpt_second);
        r = -1;
        goto EXIT;
    }

    /* Stage already set - ready for update, exitting */
    if ((int) stage == (int) internal_stage - 1)
        goto EXIT;
    /* Unexpected stage given */
    if (stage != internal_stage) {
        r = -1;
        goto EXIT;
    }

    switch (stage) {
    case UPDATE_MAIN:
            if (is_ufs) {
                if(stat(XBL_PRIMARY, &xbl_partition_stat)||
                                stat(XBL_BACKUP, &xbl_partition_stat)){
                        //Non fatal error. Just means this target does not
                        //use XBL but relies on sbl whose update is handled
                        //by the normal methods.
                        fprintf(stderr, "%s: xbl part not found(%s).Assuming sbl in use\n",
                                        __func__,
                                        strerror(errno));
                } else {
                        //Switch the boot lun so that backup boot LUN is used
                        r = gpt_utils_set_xbl_boot_partition(BACKUP_BOOT);
                        if(r){
                                fprintf(stderr, "%s: Failed to set xbl backup partition as boot\n",
                                                __func__);
                                goto EXIT;
                        }
                }
        }
        //Fix up the backup GPT table so that it actually points to
        //the backup copy of the boot critical images
        fprintf(stderr, "%s: Preparing for primary partition update\n",
                        __func__);
        r = gpt2_set_boot_chain(fd, BACKUP_BOOT);
        if (r) {
            if (r < 0)
                fprintf(stderr,
                                "%s: Setting secondary GPT to backup boot failed\n",
                                __func__);
            /* No backup partitions - do not corrupt GPT, do not flag error */
            else
                r = 0;
            goto EXIT;
        }
        //corrupt the primary GPT so that the backup(which now points to
        //the backup boot partitions is used)
        r = gpt_set_state(fd, PRIMARY_GPT, GPT_BAD_SIGNATURE);
        if (r) {
            fprintf(stderr, "%s: Corrupting primary GPT header failed\n",
                            __func__);
            goto EXIT;
        }
        break;
    case UPDATE_BACKUP:
        if (is_ufs) {
                if(stat(XBL_PRIMARY, &xbl_partition_stat)||
                                stat(XBL_BACKUP, &xbl_partition_stat)){
                        //Non fatal error. Just means this target does not
                        //use XBL but relies on sbl whose update is handled
                        //by the normal methods.
                        fprintf(stderr, "%s: xbl part not found(%s).Assuming sbl in use\n",
                                        __func__,
                                        strerror(errno));
                } else {
                        //Switch the boot lun so that backup boot LUN is used
                        r = gpt_utils_set_xbl_boot_partition(NORMAL_BOOT);
                        if(r) {
                                fprintf(stderr, "%s: Failed to set xbl backup partition as boot\n",
                                                __func__);
                                goto EXIT;
                        }
                }
        }
        //Fix the primary GPT header so that is used
        fprintf(stderr, "%s: Preparing for backup partition update\n",
                        __func__);
        r = gpt_set_state(fd, PRIMARY_GPT, GPT_OK);
        if (r) {
            fprintf(stderr, "%s: Fixing primary GPT header failed\n",
                             __func__);
            goto EXIT;
        }
        //Corrupt the scondary GPT header
        r = gpt_set_state(fd, SECONDARY_GPT, GPT_BAD_SIGNATURE);
        if (r) {
            fprintf(stderr, "%s: Corrupting secondary GPT header failed\n",
                            __func__);
            goto EXIT;
        }
        break;
    case UPDATE_FINALIZE:
        //Undo the changes we had made in the UPDATE_MAIN stage so that the
        //primary/backup GPT headers once again point to the same set of
        //partitions
        fprintf(stderr, "%s: Finalizing partitions\n",
                        __func__);
        r = gpt2_set_boot_chain(fd, NORMAL_BOOT);
        if (r < 0) {
            fprintf(stderr, "%s: Setting secondary GPT to normal boot failed\n",
                            __func__);
            goto EXIT;
        }

        r = gpt_set_state(fd, SECONDARY_GPT, GPT_OK);
        if (r) {
            fprintf(stderr, "%s: Fixing secondary GPT header failed\n",
                            __func__);
            goto EXIT;
        }
        break;
    default:;
    }

EXIT:
    if (fd >= 0) {
       fsync(fd);
       close(fd);
    }
    return r;
}

int add_lun_to_update_list(char *lun_path, struct update_data *dat)
{
        uint32_t i = 0;
        struct stat st;
        if (!lun_path || !dat){
                fprintf(stderr, "%s: Invalid data",
                                __func__);
                return -1;
        }
        if (stat(lun_path, &st)) {
                fprintf(stderr, "%s: Unable to access %s. Skipping adding to list",
                                __func__,
                                lun_path);
                return -1;
        }
        if (dat->num_valid_entries == 0) {
                fprintf(stderr, "%s: Copying %s into lun_list[%d]\n",
                                __func__,
                                lun_path,
                                i);
                strlcpy(dat->lun_list[0], lun_path,
                                PATH_MAX * sizeof(char));
                dat->num_valid_entries = 1;
        } else {
                for (i = 0; (i < dat->num_valid_entries) &&
                                (dat->num_valid_entries < MAX_LUNS - 1); i++) {
                        //Check if the current LUN is not already part
                        //of the lun list
                        if (!strncmp(lun_path,dat->lun_list[i],
                                                strlen(dat->lun_list[i]))) {
                                //LUN already in list..Return
                                return 0;
                        }
                }
                fprintf(stderr, "%s: Copying %s into lun_list[%d]\n",
                                __func__,
                                lun_path,
                                dat->num_valid_entries);
                //Add LUN path lun list
                strlcpy(dat->lun_list[dat->num_valid_entries], lun_path,
                                PATH_MAX * sizeof(char));
                dat->num_valid_entries++;
        }
        return 0;
}

int prepare_boot_update(enum boot_update_stage stage)
{
        int is_ufs = gpt_utils_is_ufs_device();
        struct stat ufs_dir_stat;
        struct update_data data;
        int rcode = 0;
        uint32_t i = 0;
        int is_error = 0;
        const char ptn_swap_list[][MAX_GPT_NAME_SIZE] = { PTN_SWAP_LIST };
        //Holds /dev/block/bootdevice/by-name/*bak entry
        char buf[PATH_MAX] = {0};
        //Holds the resolved path of the symlink stored in buf
        char real_path[PATH_MAX] = {0};

        if (!is_ufs) {
                //emmc device. Just pass in path to mmcblk0
                return prepare_partitions(stage, BLK_DEV_FILE);
        } else {
                //Now we need to find the list of LUNs over
                //which the boot critical images are spread
                //and set them up for failsafe updates.To do
                //this we find out where the symlinks for the
                //each of the paths under
                ///dev/block/bootdevice/by-name/PTN_SWAP_LIST
                //actually point to.
                fprintf(stderr, "%s: Running on a UFS device\n",
                                __func__);
                memset(&data, '\0', sizeof(struct update_data));
                for (i=0; i < ARRAY_SIZE(ptn_swap_list); i++) {
                        //XBL on UFS does not follow the convention
                        //of being loaded based on well known GUID'S.
                        //We take care of switching the UFS boot LUN
                        //explicitly later on.
                        if (!strncmp(ptn_swap_list[i],PTN_XBL,strlen(PTN_XBL))
                            || !strncmp(ptn_swap_list[i],PTN_MULTIIMGOEM,strlen(PTN_MULTIIMGOEM))
                            || !strncmp(ptn_swap_list[i],PTN_MULTIIMGQTI,strlen(PTN_MULTIIMGQTI)))
                                continue;
                        snprintf(buf, sizeof(buf),
                                        "%s/%sbak",
                                        BOOT_DEV_DIR,
                                        ptn_swap_list[i]);
                        if (stat(buf, &ufs_dir_stat)) {
                                continue;
                        }
                        if (readlink(buf, real_path, sizeof(real_path) - 1) < 0)
                        {
                                fprintf(stderr, "%s: readlink error. Skipping %s",
                                                __func__,
                                                strerror(errno));
                        } else {
                              if(strlen(real_path) < PATH_TRUNCATE_LOC + 1){
                                    fprintf(stderr, "Unknown path.Skipping :%s:\n",
                                                real_path);
                                } else {
                                    real_path[PATH_TRUNCATE_LOC] = '\0';
                                    add_lun_to_update_list(real_path, &data);
                                }
                        }
                        memset(buf, '\0', sizeof(buf));
                        memset(real_path, '\0', sizeof(real_path));
                }
                for (i=0; i < data.num_valid_entries; i++) {
                        fprintf(stderr, "%s: Preparing %s for update stage %d\n",
                                        __func__,
                                        data.lun_list[i],
                                        stage);
                        rcode = prepare_partitions(stage, data.lun_list[i]);
                        if (rcode != 0)
                        {
                                fprintf(stderr, "%s: Failed to prepare %s.Continuing..\n",
                                                __func__,
                                                data.lun_list[i]);
                                is_error = 1;
                        }
                }
        }
        if (is_error)
                return -1;
        return 0;
}

//Given a parttion name(eg: rpm) get the path to the block device that
//represents the GPT disk the partition resides on. In the case of emmc it
//would be the default emmc dev(/dev/block/mmcblk0). In the case of UFS we look
//through the /dev/block/bootdevice/by-name/ tree for partname, and resolve
//the path to the LUN from there.
static int get_dev_path_from_partition_name(const char *partname,
                char *buf,
                size_t buflen)
{
        struct stat st;
        char path[PATH_MAX] = {0};
        if (!partname || !buf || buflen < ((PATH_TRUNCATE_LOC) + 1)) {
                ALOGE("%s: Invalid argument", __func__);
                goto error;
        }
        if (gpt_utils_is_ufs_device()) {
                //Need to find the lun that holds partition partname
                snprintf(path, sizeof(path),
                                "%s/%s",
                                BOOT_DEV_DIR,
                                partname);
                if (stat(path, &st)) {
                        goto error;
                }
                if (readlink(path, buf, buflen) < 0)
                {
                        goto error;
                } else {
                        buf[PATH_TRUNCATE_LOC] = '\0';
                }
        } else {
                snprintf(buf, buflen, BLK_DEV_FILE);
        }
        return 0;

error:
        return -1;
}

int gpt_utils_get_partition_map(vector<string>& ptn_list,
                map<string, vector<string>>& partition_map) {
        char devpath[PATH_MAX] = {'\0'};
        map<string, vector<string>>::iterator it;
        if (ptn_list.size() < 1) {
                fprintf(stderr, "%s: Invalid ptn list\n", __func__);
                goto error;
        }
        //Go through the passed in list
        for (uint32_t i = 0; i < ptn_list.size(); i++)
        {
                //Key in the map is the path to the device that holds the
                //partition
                if (get_dev_path_from_partition_name(ptn_list[i].c_str(),
                                devpath,
                                sizeof(devpath))) {
                        //Not necessarily an error. The partition may just
                        //not be present.
                        continue;
                }
                string path = devpath;
                it = partition_map.find(path);
                if (it != partition_map.end()) {
                        it->second.push_back(ptn_list[i]);
                } else {
                        vector<string> str_vec;
                        str_vec.push_back( ptn_list[i]);
                        partition_map.insert(pair<string, vector<string>>
                                        (path, str_vec));
                }
                memset(devpath, '\0', sizeof(devpath));
        }
        return 0;
error:
        return -1;
}

//Get the block size of the disk represented by decsriptor fd
static uint32_t gpt_get_block_size(int fd)
{
        uint32_t block_size = 0;
        if (fd < 0) {
                ALOGE("%s: invalid descriptor",
                                __func__);
                goto error;
        }
        if (ioctl(fd, BLKSSZGET, &block_size) != 0) {
                ALOGE("%s: Failed to get GPT dev block size : %s",
                                __func__,
                                strerror(errno));
                goto error;
        }
        return block_size;
error:
        return 0;
}

//Write the GPT header present in the passed in buffer back to the
//disk represented by fd
static int gpt_set_header(uint8_t *gpt_header, int fd,
                enum gpt_instance instance)
{
        uint32_t block_size = 0;
        off64_t gpt_header_offset = 0;
        if (!gpt_header || fd < 0) {
                ALOGE("%s: Invalid arguments",
                                __func__);
                goto error;
        }
        block_size = gpt_get_block_size(fd);
        if (block_size == 0) {
                ALOGE("%s: Failed to get block size", __func__);
                goto error;
        }
        if (instance == PRIMARY_GPT)
                gpt_header_offset = block_size;
        else
                gpt_header_offset = lseek64(fd, 0, SEEK_END) - block_size;
        if (gpt_header_offset <= 0) {
                ALOGE("%s: Failed to get gpt header offset",__func__);
                goto error;
        }
        if (blk_rw(fd, 1, gpt_header_offset, gpt_header, block_size)) {
                ALOGE("%s: Failed to write back GPT header", __func__);
                goto error;
        }
        return 0;
error:
        return -1;
}

//Read out the GPT header for the disk that contains the partition partname
static uint8_t* gpt_get_header(const char *partname, enum gpt_instance instance)
{
        uint8_t* hdr = NULL;
        char devpath[PATH_MAX] = {0};
        int64_t hdr_offset = 0;
        uint32_t block_size = 0;
        int fd = -1;
        if (!partname) {
                ALOGE("%s: Invalid partition name", __func__);
                goto error;
        }
        if (get_dev_path_from_partition_name(partname, devpath, sizeof(devpath))
                        != 0) {
                ALOGE("%s: Failed to resolve path for %s",
                                __func__,
                                partname);
                goto error;
        }
        fd = open(devpath, O_RDWR);
        if (fd < 0) {
                ALOGE("%s: Failed to open %s : %s",
                                __func__,
                                devpath,
                                strerror(errno));
                goto error;
        }
        block_size = gpt_get_block_size(fd);
        if (block_size == 0)
        {
                ALOGE("%s: Failed to get gpt block size for %s",
                                __func__,
                                partname);
                goto error;
        }

        hdr = (uint8_t*)malloc(block_size);
        if (!hdr) {
                ALOGE("%s: Failed to allocate memory for gpt header",
                                __func__);
        }
        if (instance == PRIMARY_GPT)
                hdr_offset = block_size;
        else {
                hdr_offset = lseek64(fd, 0, SEEK_END) - block_size;
        }
        if (hdr_offset < 0) {
                ALOGE("%s: Failed to get gpt header offset",
                                __func__);
                goto error;
        }
        if (blk_rw(fd, 0, hdr_offset, hdr, block_size)) {
                ALOGE("%s: Failed to read GPT header from device",
                                __func__);
                goto error;
        }
        close(fd);
        return hdr;
error:
        if (fd >= 0)
                close(fd);
        if (hdr)
                free(hdr);
        return NULL;
}

//Returns the partition entry array based on the
//passed in buffer which contains the gpt header.
//The fd here is the descriptor for the 'disk' which
//holds the partition
static uint8_t* gpt_get_pentry_arr(uint8_t *hdr, int fd)
{
        uint64_t pentries_start = 0;
        uint32_t pentry_size = 0;
        uint32_t block_size = 0;
        uint32_t pentries_arr_size = 0;
        uint8_t *pentry_arr = NULL;
        int rc = 0;
        if (!hdr) {
                ALOGE("%s: Invalid header", __func__);
                goto error;
        }
        if (fd < 0) {
                ALOGE("%s: Invalid fd", __func__);
                goto error;
        }
        block_size = gpt_get_block_size(fd);
        if (!block_size) {
                ALOGE("%s: Failed to get gpt block size for",
                                __func__);
                goto error;
        }
        pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
        pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
        pentries_arr_size =
                GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
        pentry_arr = (uint8_t*)calloc(1, pentries_arr_size);
        if (!pentry_arr) {
                ALOGE("%s: Failed to allocate memory for partition array",
                                __func__);
                goto error;
        }
        rc = blk_rw(fd, 0,
                        pentries_start,
                        pentry_arr,
                        pentries_arr_size);
        if (rc) {
                ALOGE("%s: Failed to read partition entry array",
                                __func__);
                goto error;
        }
        return pentry_arr;
error:
        if (pentry_arr)
                free(pentry_arr);
        return NULL;
}

static int gpt_set_pentry_arr(uint8_t *hdr, int fd, uint8_t* arr)
{
        uint32_t block_size = 0;
        uint64_t pentries_start = 0;
        uint32_t pentry_size = 0;
        uint32_t pentries_arr_size = 0;
        int rc = 0;
        if (!hdr || fd < 0 || !arr) {
                ALOGE("%s: Invalid argument", __func__);
                goto error;
        }
        block_size = gpt_get_block_size(fd);
        if (!block_size) {
                ALOGE("%s: Failed to get gpt block size for",
                                __func__);
                goto error;
        }
        pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
        pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
        pentries_arr_size =
                GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
        rc = blk_rw(fd, 1,
                        pentries_start,
                        arr,
                        pentries_arr_size);
        if (rc) {
                ALOGE("%s: Failed to read partition entry array",
                                __func__);
                goto error;
        }
        return 0;
error:
        return -1;
}



//Allocate a handle used by calls to the "gpt_disk" api's
struct gpt_disk * gpt_disk_alloc()
{
        struct gpt_disk *disk;
        disk = (struct gpt_disk *)malloc(sizeof(struct gpt_disk));
        if (!disk) {
                ALOGE("%s: Failed to allocate memory", __func__);
                goto end;
        }
        memset(disk, 0, sizeof(struct gpt_disk));
end:
        return disk;
}

//Free previously allocated/initialized handle
void gpt_disk_free(struct gpt_disk *disk)
{
        if (!disk)
                return;
        if (disk->hdr)
                free(disk->hdr);
        if (disk->hdr_bak)
                free(disk->hdr_bak);
        if (disk->pentry_arr)
                free(disk->pentry_arr);
        if (disk->pentry_arr_bak)
                free(disk->pentry_arr_bak);
        free(disk);
        return;
}

//fills up the passed in gpt_disk struct with information about the
//disk represented by path dev. Returns 0 on success and -1 on error.
int gpt_disk_get_disk_info(const char *dev, struct gpt_disk *dsk)
{

	struct gpt_disk *disk = NULL;
	int fd = -1;
	uint32_t gpt_header_size = 0;
	uint32_t crc_zero;

	crc_zero = crc32(0L, Z_NULL, 0);
        if (!dsk || !dev) {
                ALOGE("%s: Invalid arguments", __func__);
                goto error;
        }
        disk = dsk;
        disk->hdr = gpt_get_header(dev, PRIMARY_GPT);
        if (!disk->hdr) {
                ALOGE("%s: Failed to get primary header", __func__);
                goto error;
        }
        gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);
        disk->hdr_crc = crc32(crc_zero, disk->hdr, gpt_header_size);
        disk->hdr_bak = gpt_get_header(dev, SECONDARY_GPT);
        if (!disk->hdr_bak) {
                ALOGE("%s: Failed to get backup header", __func__);
                goto error;
        }
        disk->hdr_bak_crc = crc32(crc_zero, disk->hdr_bak, gpt_header_size);

        //Descriptor for the block device. We will use this for further
        //modifications to the partition table
        if (get_dev_path_from_partition_name(dev,
                                disk->devpath,
                                sizeof(disk->devpath)) != 0) {
                ALOGE("%s: Failed to resolve path for %s",
                                __func__,
                                dev);
                goto error;
        }
        fd = open(disk->devpath, O_RDWR | O_DSYNC);
        if (fd < 0) {
                ALOGE("%s: Failed to open %s: %s",
                                __func__,
                                disk->devpath,
                                strerror(errno));
                goto error;
        }
        disk->pentry_arr = gpt_get_pentry_arr(disk->hdr, fd);
        if (!disk->pentry_arr) {
                ALOGE("%s: Failed to obtain partition entry array",
                                __func__);
                goto error;
        }
        disk->pentry_arr_bak = gpt_get_pentry_arr(disk->hdr_bak, fd);
        if (!disk->pentry_arr_bak) {
                ALOGE("%s: Failed to obtain backup partition entry array",
                                __func__);
                goto error;
        }
        disk->pentry_size = GET_4_BYTES(disk->hdr + PENTRY_SIZE_OFFSET);
        disk->pentry_arr_size =
                GET_4_BYTES(disk->hdr + PARTITION_COUNT_OFFSET) *
                disk->pentry_size;
        disk->pentry_arr_crc = GET_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET);
        disk->pentry_arr_bak_crc = GET_4_BYTES(disk->hdr_bak +
                        PARTITION_CRC_OFFSET);
        disk->block_size = gpt_get_block_size(fd);
        close(fd);
        disk->is_initialized = GPT_DISK_INIT_MAGIC;
        return 0;
error:
        if (fd >= 0)
                close(fd);
        return -1;
}

//Get pointer to partition entry from a allocated gpt_disk structure
uint8_t* gpt_disk_get_pentry(struct gpt_disk *disk,
                const char *partname,
                enum gpt_instance instance)
{
        uint8_t *ptn_arr = NULL;
        if (!disk || !partname || disk->is_initialized != GPT_DISK_INIT_MAGIC) {
                ALOGE("%s: Invalid argument",__func__);
                goto error;
        }
        ptn_arr = (instance == PRIMARY_GPT) ?
                disk->pentry_arr : disk->pentry_arr_bak;
        return (gpt_pentry_seek(partname, ptn_arr,
                        ptn_arr + disk->pentry_arr_size ,
                        disk->pentry_size));
error:
        return NULL;
}

//Update CRC values for the various components of the gpt_disk
//structure. This function should be called after any of the fields
//have been updated before the structure contents are written back to
//disk.
int gpt_disk_update_crc(struct gpt_disk *disk)
{
        uint32_t gpt_header_size = 0;
        uint32_t crc_zero;
        crc_zero = crc32(0L, Z_NULL, 0);
        if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) {
                ALOGE("%s: invalid argument", __func__);
                goto error;
        }
        //Recalculate the CRC of the primary partiton array
        disk->pentry_arr_crc = crc32(crc_zero,
                        disk->pentry_arr,
                        disk->pentry_arr_size);
        //Recalculate the CRC of the backup partition array
        disk->pentry_arr_bak_crc = crc32(crc_zero,
                        disk->pentry_arr_bak,
                        disk->pentry_arr_size);
        //Update the partition CRC value in the primary GPT header
        PUT_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET, disk->pentry_arr_crc);
        //Update the partition CRC value in the backup GPT header
        PUT_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET,
                        disk->pentry_arr_bak_crc);
        //Update the CRC value of the primary header
        gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);
        //Header CRC is calculated with its own CRC field set to 0
        PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, 0);
        PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, 0);
        disk->hdr_crc = crc32(crc_zero, disk->hdr, gpt_header_size);
        disk->hdr_bak_crc = crc32(crc_zero, disk->hdr_bak, gpt_header_size);
        PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, disk->hdr_crc);
        PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, disk->hdr_bak_crc);
        return 0;
error:
        return -1;
}

//Write the contents of struct gpt_disk back to the actual disk
int gpt_disk_commit(struct gpt_disk *disk)
{
        int fd = -1;
        if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)){
                ALOGE("%s: Invalid args", __func__);
                goto error;
        }
        fd = open(disk->devpath, O_RDWR | O_DSYNC);
        if (fd < 0) {
                ALOGE("%s: Failed to open %s: %s",
                                __func__,
                                disk->devpath,
                                strerror(errno));
                goto error;
        }
        //Write the primary header
        if(gpt_set_header(disk->hdr, fd, PRIMARY_GPT) != 0) {
                ALOGE("%s: Failed to update primary GPT header",
                                __func__);
                goto error;
        }
        //Write back the primary partition array
        if (gpt_set_pentry_arr(disk->hdr, fd, disk->pentry_arr)) {
                ALOGE("%s: Failed to write primary GPT partition arr",
                                __func__);
                goto error;
        }
        //Write back the secondary header
        if(gpt_set_header(disk->hdr_bak, fd, SECONDARY_GPT) != 0) {
                ALOGE("%s: Failed to update secondary GPT header",
                                __func__);
                goto error;
        }
        //Write back the secondary partition array
        if (gpt_set_pentry_arr(disk->hdr_bak, fd, disk->pentry_arr_bak)) {
                ALOGE("%s: Failed to write secondary GPT partition arr",
                                __func__);
                goto error;
        }
        fsync(fd);
        close(fd);
        return 0;
error:
        if (fd >= 0)
                close(fd);
        return -1;
}